Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Environ Microbiol ; 26(3): e16608, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38504412

RESUMO

Rhodopseudomonas palustris TIE-1 grows photoautotrophically with Fe(II) as an electron donor and photoheterotrophically with a variety of organic substrates. However, it is unclear whether R. palustris TIE-1 conducts Fe(II) oxidation in conditions where organic substrates and Fe(II) are available simultaneously. In addition, the effect of organic co-substrates on Fe(II) oxidation rates or the identity of Fe(III) minerals formed is unknown. We incubated R. palustris TIE-1 with 2 mM Fe(II), amended with 0.6 mM organic co-substrate, and in the presence/absence of CO2 . We found that in the absence of CO2 , only the organic co-substrates acetate, lactate and pyruvate, but not Fe(II), were consumed. When CO2 was present, Fe(II) and all organic substrates were consumed. Acetate, butyrate and pyruvate were consumed before Fe(II) oxidation commenced, whereas lactate and glucose were consumed at the same time as Fe(II) oxidation proceeded. Lactate, pyruvate and glucose increased the Fe(II) oxidation rate significantly (by up to threefold in the case of lactate). 57 Fe Mössbauer spectroscopy revealed that short-range ordered Fe(III) oxyhydroxides were formed under all conditions. This study demonstrates phototrophic Fe(II) oxidation proceeds even in the presence of organic compounds, and that the simultaneous oxidation of organic substrates can stimulate Fe(II) oxidation.


Assuntos
Dióxido de Carbono , Compostos Férricos , Rodopseudomonas , Oxirredução , Ácido Láctico , Compostos Ferrosos , Piruvatos , Acetatos , Glucose
2.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452196

RESUMO

Diverse ecosystems host microbial relationships that are stabilized by nutrient cross-feeding. Cross-feeding can involve metabolites that should hold value for the producer. Externalization of such communally valuable metabolites is often unexpected and difficult to predict. Previously, we discovered purine externalization by Rhodopseudomonas palustris by its ability to rescue an Escherichia coli purine auxotroph. Here we found that an E. coli purine auxotroph can stably coexist with R. palustris due to purine cross-feeding. We identified the cross-fed purine as adenine. Adenine was externalized by R. palustris under diverse growth conditions. Computational modeling suggested that adenine externalization occurs via diffusion across the cytoplasmic membrane. RNAseq analysis led us to hypothesize that adenine accumulation and externalization stem from a salvage pathway bottleneck at the enzyme encoded by apt. Ectopic expression of apt eliminated adenine externalization, supporting our hypothesis. A comparison of 49 R. palustris strains suggested that purine externalization is relatively common, with 16 strains exhibiting the trait. Purine externalization was correlated with the genomic orientation of apt, but apt orientation alone could not always explain purine externalization. Our results provide a mechanistic understanding of how a communally valuable metabolite can participate in cross-feeding. Our findings also highlight the challenge in identifying genetic signatures for metabolite externalization.


Assuntos
Adenina , Escherichia coli , Adenina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ecossistema , Purinas/metabolismo , Simulação por Computador
3.
Appl Environ Microbiol ; 90(1): e0174123, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38078768

RESUMO

Denitrification is a form of anaerobic respiration wherein nitrate (NO3-) is sequentially reduced via nitrite (NO2-), nitric oxide, and nitrous oxide (N2O) to dinitrogen gas (N2) by four reductase enzymes. Partial denitrifying bacteria possess only one or some of these four reductases and use them as independent respiratory modules. However, it is unclear if partial denitrifiers sense and respond to denitrification intermediates outside of their reductase repertoire. Here, we tested the denitrifying capabilities of two purple nonsulfur bacteria, Rhodopseudomonas palustris CGA0092 and Rhodobacter capsulatus SB1003. Each had denitrifying capabilities that matched their genome annotation; CGA0092 reduced NO2- to N2, and SB1003 reduced N2O to N2. For each bacterium, N2O reduction could be used both for electron balance during growth on electron-rich organic compounds in light and for energy transformation via respiration in darkness. However, N2O reduction required supplementation with a denitrification intermediate, including those for which there was no associated denitrification enzyme. For CGA0092, NO3- served as a stable, non-catalyzable molecule that was sufficient to activate N2O reduction. Using a ß-galactosidase reporter, we found that NO3- acted, at least in part, by stimulating N2O reductase gene expression. In SB1003, NO2- but not NO3- activated N2O reduction, but NO2- was slowly removed, likely by a promiscuous enzyme activity. Our findings reveal that partial denitrifiers can still be subject to regulation by denitrification intermediates that they cannot use.IMPORTANCEDenitrification is a form of microbial respiration wherein nitrate is converted via several nitrogen oxide intermediates into harmless dinitrogen gas. Partial denitrifying bacteria, which individually have some but not all denitrifying enzymes, can achieve complete denitrification as a community by cross-feeding nitrogen oxide intermediates. However, the last intermediate, nitrous oxide (N2O), is a potent greenhouse gas that often escapes, motivating efforts to understand and improve the efficiency of denitrification. Here, we found that at least some partial denitrifying N2O reducers can sense and respond to nitrogen oxide intermediates that they cannot otherwise use. The regulatory effects of nitrogen oxides on partial denitrifiers are thus an important consideration in understanding and applying denitrifying bacterial communities to combat greenhouse gas emissions.


Assuntos
Gases de Efeito Estufa , Óxido Nitroso , Óxido Nitroso/metabolismo , Desnitrificação , Nitratos/metabolismo , Gases de Efeito Estufa/metabolismo , Dióxido de Nitrogênio/metabolismo , Dióxido de Nitrogênio/farmacologia , Bactérias/genética , Óxido Nítrico/metabolismo , Oxirredutases/metabolismo
4.
bioRxiv ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37904951

RESUMO

Diverse ecosystems host microbial relationships that are stabilized by nutrient cross-feeding. Cross-feeding can involve metabolites that should hold value for the producer. Externalization of such communally valuable metabolites is often unexpected and difficult to predict. Previously, we fortuitously discovered purine externalization by Rhodopseudomonas palustris by its ability to rescue growth of an Escherichia coli purine auxotroph. Here we found that an E. coli purine auxotroph can stably coexist with R. palustris due to purine cross-feeding. We identified the cross-fed purine as adenine. Adenine was externalized by R. palustris under diverse growth conditions. Computational models suggested that adenine externalization occurs via passive diffusion across the cytoplasmic membrane. RNAseq analysis led us to hypothesize that accumulation and externalization of adenine stems from an adenine salvage bottleneck at the enzyme encoded by apt. Ectopic expression of apt eliminated adenine externalization, supporting our hypothesis. A comparison of 49 R. palustris strains suggested that purine externalization is relatively common, with 15 of the strains exhibiting the trait. Purine externalization was correlated with the genomic orientation of apt orientation, but apt orientation alone could not explain adenine externalization in some strains. Our results provide a mechanistic understanding of how a communally valuable metabolite can participate in cross-feeding. Our findings also highlight the challenge in identifying genetic signatures for metabolite externalization.

5.
mBio ; 14(2): e0360922, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36786592

RESUMO

How bacteria transition into growth arrest as part of stationary phase has been well-studied, but our knowledge of features that help cells to stay alive in the following days and weeks is incomplete. Most studies have used heterotrophic bacteria that are growth-arrested by depletion of substrates used for both biosynthesis and energy generation, making is difficult to disentangle the effects of the two. In contrast, when grown anaerobically in light, the phototrophic bacterium Rhodopseudomonas palustris generates ATP from light via cyclic photophosphorylation, and builds biomolecules from organic substrates, such as acetate. As such, energy generation and carbon utilization are independent from one another. Here, we compared the physiological and molecular responses of R. palustris to growth arrest caused by carbon source depletion in light (energy-replete) and dark (energy-depleted) conditions. Both sets of cells remained viable for 6 to 10 days, at which point dark-incubated cells lost viability, whereas light-incubated cells remained fully viable for 60 days. Dark-incubated cells were depleted in intracellular ATP prior to losing viability, suggesting that ATP depletion is a cause of cell death. Dark-incubated cells also shut down measurable protein synthesis, whereas light-incubated cells continued to synthesize proteins at low levels. Cells incubated in both conditions continued to transcribe genes. We suggest that R. palustris may completely shut down protein synthesis in dark, energy-depleted, conditions as a strategy to survive the nighttime hours of day/night cycles it experiences in nature, where there is a predictable source of energy in the form of sunlight only during the day. IMPORTANCE The molecular and physiological basis of bacterial longevity in growth arrest is important to investigate for several reasons. Such investigations could improve treatment of chronic infections, advance use of non-growing bacteria as biocatalysts to make high yields of value-added products, and improve estimates of microbial activities in natural habitats, where cells are often growing slowly or not at all. Here, we compared survival of the phototrophic bacterium Rhodopseudomonas palustris under conditions where it generates ATP (incubation in light), and where it does not generate ATP (incubation in dark) to directly assess effects of energy depletion on long-term viability. We found that ATP is important for long-term survival over weeks. However, R. palustris survives 12 h periods of ATP depletion without loss of viability, apparently in anticipation of sunrise and restoration of its ability to generate ATP. Our work suggests that cells respond to ATP depletion by shutting down protein synthesis.


Assuntos
Longevidade , Rodopseudomonas , Rodopseudomonas/metabolismo , Carbono/metabolismo , Trifosfato de Adenosina/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(18): e2117633119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476526

RESUMO

Surface sensing is a critical process that promotes the transition to a biofilm lifestyle. Several surface-sensing mechanisms have been described for a range of species, most involving surface appendages, such as flagella and pili. Pseudomonas aeruginosa uses the Wsp chemosensory-like signal transduction pathway to sense surfaces and promote biofilm formation. The methyl-accepting chemotaxis protein WspA recognizes an unknown surface-associated signal and initiates a phosphorylation cascade that activates the diguanylate cyclase WspR. We conducted a screen for Wsp-activating compounds and found that chemicals that impact the cell envelope induce Wsp signaling, increase intracellular c-di-GMP levels, and can promote surface attachment. To isolate the Wsp system from other P. aeruginosa surface-sensing systems, we heterologously expressed it in Escherichia coli and found it sufficient for sensing surfaces and the chemicals identified in our screen. Using well-characterized reporters for different E. coli cell envelope stress responses, we then determined that Wsp sensitivity overlapped with multiple E. coli cell envelope stress-response systems. Using mutational and CRISPRi analysis, we found that misfolded proteins in the periplasm appear to be a major stimulus of the Wsp system. Finally, we show that surface attachment appears to have an immediate, observable effect on cell envelope integrity. Collectively, our results provide experimental evidence that cell envelope stress represents an important feature of surface sensing in P. aeruginosa.


Assuntos
Parede Celular , Pseudomonas aeruginosa , Biofilmes , Membrana Celular/metabolismo , Periplasma , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
7.
Annu Rev Microbiol ; 76: 91-111, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35417196

RESUMO

Since Jacques Monod's foundational work in the 1940s, investigators studying bacterial physiology have largely (but not exclusively) focused on the exponential phase of bacterial cultures, which is characterized by rapid growth and high biosynthesis activity in the presence of excess nutrients. However, this is not the predominant state of bacterial life. In nature, most bacteria experience nutrient limitation most of the time. In fact, investigators even prior to Monod had identified other aspects of bacterial growth, including what is now known as the stationary phase, when nutrients become limiting. This review will discuss how bacteria transition to growth arrest in response to nutrient limitation through changes in transcription, translation, and metabolism. We will then examine how these changes facilitate survival during potentially extended periods of nutrient limitation, with particular attention to the metabolic strategies that underpin bacterial longevity in this state.


Assuntos
Bactérias , Longevidade , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Divisão Celular , Regulação Bacteriana da Expressão Gênica
8.
J Bacteriol ; 204(4): e0047921, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35285725

RESUMO

Hospital environments are excellent reservoirs for the opportunistic pathogen Acinetobacter baumannii in part because it is exceptionally tolerant to desiccation. We found that relative to other A. baumannii strains, the virulent strain AB5075 was strikingly desiccation resistant at 2% relative humidity (RH), suggesting that it is a good model for studies of the functional basis of this trait. Consistent with results from other A. baumannii strains at 40% RH, we found the global posttranscriptional regulator CsrA to be critically important for desiccation tolerance of AB5075 at 2% RH. Proteomics experiments identified proteins that were differentially present in wild-type and csrA mutant cells. Subsequent analysis of mutants in genes encoding some of these proteins revealed six genes that were required for wild-type levels of desiccation tolerance. These include genes for catalase, a universal stress protein, a hypothetical protein, and a biofilm-associated protein. Two genes of unknown function had very strong desiccation phenotypes, with one of the two genes predicting an intrinsically disordered protein (IDP) that binds to DNA. Intrinsically disordered proteins are widespread in eukaryotes but less so in prokaryotes. Our results suggest there are new mechanisms underlying desiccation tolerance in bacteria and identify several key functions involved. IMPORTANCE Acinetobacter baumannii is found in terrestrial environments but can cause nosocomial infections in very sick patients. A factor that contributes to the prevalence of A. baumannii in hospital settings is that it is intrinsically resistant to dry conditions. Here, we established the virulent strain A. baumannii AB5075 as a model for studies of desiccation tolerance at very low relative humidity. Our results show that this trait depends on two proteins of unknown function, one of which is predicted to be an intrinsically disordered protein. This category of protein is critical for the small animals named tardigrades to survive desiccation. Our results suggest that A. baumannii may have novel strategies to survive desiccation that have not previously been seen in bacteria.


Assuntos
Acinetobacter baumannii , Proteínas Intrinsicamente Desordenadas , Acinetobacter baumannii/metabolismo , Animais , Biofilmes , Dessecação , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteômica
9.
Microbiol Spectr ; 10(1): e0209321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107346

RESUMO

Methanocaldococcus sp. strain FS406-22, a hyperthermophilic methanogen, fixes nitrogen with a minimal set of known nif genes. Only four structural nif genes, nifH, nifD, nifK, and nifE, are present in a cluster, and a nifB homolog is present elsewhere in the genome. nifN, essential for the final synthesis of the iron-molybdenum cofactor of nitrogenase in well-characterized diazotrophs, is absent from FS406-22. In addition, FS406-22 encodes four novel hypothetical proteins, and a ferredoxin, in the nif cluster. Here, we develop a set of genetic tools for FS406-22 and test the functionality of genes in the nif cluster by making markerless in-frame deletion mutations. Deletion of the gene for one hypothetical protein, designated Hp4, delayed the initiation of diazotrophic growth and decreased the growth rate, an effect we confirmed by genetic complementation. NifE also appeared to play a role in diazotrophic growth, and the encoding of Hp4 and NifE in a single operon suggested they may work together in some way in the synthesis of the nitrogenase cofactor. No role could be discerned for any of the other hypothetical proteins, nor for the ferredoxin, despite the presence of these genes in a variety of related organisms. Possible pathways and evolutionary scenarios for the synthesis of the nitrogenase cofactor in an organism that lacks nifN are discussed. IMPORTANCEMethanocaldococcus has been considered a model genus, but genetic tools have not been forthcoming until recently. Here, we develop and illustrate the utility of positive selection with either of two selective agents (simvastatin and neomycin), negative selection, generation of markerless in-frame deletion mutations, and genetic complementation. These genetic tools should be useful for a variety of related species. We address the question of the minimal set of nif genes, which has implications for how nitrogen fixation evolved.


Assuntos
Proteínas de Bactérias/genética , Methanocaldococcus/genética , Fixação de Nitrogênio/genética , Nitrogenase/genética , Genes Bacterianos/genética , Methanocaldococcus/enzimologia , Methanocaldococcus/metabolismo , Nitrogenase/metabolismo , Óperon , Regiões Promotoras Genéticas , Deleção de Sequência
10.
Trends Microbiol ; 30(3): 307-308, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34933806

Assuntos
Rodopseudomonas
11.
Sci Rep ; 11(1): 13211, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168197

RESUMO

Bradyrhizobium diazoefficiens USDA110 is one of the most effective nitrogen-fixing symbionts of soybeans. Here we carried out a large-scale transposon insertion sequencing (Tn-seq) analysis of strain Bd110spc4, which is derived from USDA110, with the goal of increasing available resources for identifying genes crucial for the survival of this plant symbiont under diverse conditions. We prepared two transposon (Tn) insertion libraries of Bd110spc4 with 155,042 unique Tn insertions when the libraries were combined, which is an average of one insertion every 58.7 bp of the reference USDA110 genome. Application of bioinformatic filtering steps to remove genes too small to be expected to have Tn insertions, resulted in a list of genes that were classified as putatively essential. Comparison of this gene set with genes putatively essential for the growth of the closely related alpha-proteobacterium, Rhodopseudomonas palustris, revealed a small set of five genes that may be collectively essential for closely related members of the family Bradyrhizobiaceae. This group includes bacteria with diverse lifestyles ranging from plant symbionts to animal-associated species to free-living species.


Assuntos
Bradyrhizobium/genética , Elementos de DNA Transponíveis/genética , Proteínas de Bactérias/genética , Fixação de Nitrogênio/genética , Rodopseudomonas/genética
12.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649224

RESUMO

A number of plant-associated proteobacteria have LuxR family transcription factors that we refer to as PipR subfamily members. PipR proteins play roles in interactions between bacteria and their plant hosts, and some are important for bacterial virulence of plants. We identified an ethanolamine derivative, N-(2-hydroxyethyl)-2-(2-hydroxyethylamino) acetamide (HEHEAA), as a potent effector of PipR-mediated gene regulation in the plant endophyte Pseudomonas GM79. HEHEAA-dependent PipR activity requires an ATP-binding cassette-type active transport system, and the periplasmic substrate-binding protein (SBP) of that system binds HEHEAA. To begin to understand the molecular basis of PipR system responses to plant factors we crystallized a HEHEAA-responsive SBP in the free- and HEHEAA-bound forms. The SBP, which is similar to peptide-binding SBPs, was in a closed conformation. A narrow cavity at the interface of its two lobes is wide enough to bind HEHEAA, but it cannot accommodate peptides with side chains. The polar atoms of HEHEAA are recognized by hydrogen-bonding interactions, and additional SBP residues contribute to the binding site. This binding mode was confirmed by a structure-based mutational analysis. We also show that a closely related SBP from the plant pathogen Pseudomonas syringae pv tomato DC3000 does not recognize HEHEAA. However, a single amino acid substitution in the presumed effector-binding pocket of the P. syringae SBP converted it to a weak HEHEAA-binding protein. The P. syringae PipR depends on a plant effector for activity, and our findings imply that different PipR-associated SBPs bind different effectors.


Assuntos
Acetamidas/química , Proteínas de Bactérias/química , Pseudomonas syringae/química , Acetamidas/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Pseudomonas syringae/metabolismo
13.
Annu Rev Microbiol ; 74: 247-266, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32660386

RESUMO

The enzyme molybdenum nitrogenase converts atmospheric nitrogen gas to ammonia and is of critical importance for the cycling of nitrogen in the biosphere and for the sustainability of life. Alternative vanadium and iron-only nitrogenases that are homologous to molybdenum nitrogenases are also found in archaea and bacteria, but they have a different transition metal, either vanadium or iron, at their active sites. So far alternative nitrogenases have only been found in microbes that also have molybdenum nitrogenase. They are less widespread than molybdenum nitrogenase in bacteria and archaea, and they are less efficient. The presumption has been that alternative nitrogenases are fail-safe enzymes that are used in situations where molybdenum is limiting. Recent work indicates that vanadium nitrogenase may play a role in the global biological nitrogen cycle and iron-only nitrogenase may contribute products that shape microbial community interactions in nature.


Assuntos
Bactérias/metabolismo , Ferro/metabolismo , Nitrogênio/metabolismo , Nitrogenase/metabolismo , Archaea/enzimologia , Archaea/metabolismo , Bactérias/enzimologia , Molibdênio/metabolismo , Fixação de Nitrogênio
15.
Appl Environ Microbiol ; 86(11)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32220835

RESUMO

The purple nonsulfur phototrophic bacterium Rhodopseudomonas palustris strain CGA009 uses the three-carbon dicarboxylic acid malonate as the sole carbon source under phototrophic conditions. However, this bacterium grows extremely slowly on this compound and does not have operons for the two pathways for malonate degradation that have been detected in other bacteria. Many bacteria grow on a spectrum of carbon sources, some of which are classified as poor growth substrates because they support low growth rates. This trait is rarely addressed in the literature, but slow growth is potentially useful in biotechnological applications where it is imperative for bacteria to divert cellular resources to value-added products rather than to growth. This prompted us to explore the genetic and physiological basis for the slow growth of R. palustris with malonate as a carbon source. There are two unlinked genes annotated as encoding a malonyl coenzyme A (malonyl-CoA) synthetase (MatB) and a malonyl-CoA decarboxylase (MatA) in the genome of R. palustris, which we verified as having the predicted functions. Additionally, two tripartite ATP-independent periplasmic transporters (TRAP systems) encoded by rpa2047 to rpa2049 and rpa2541 to rpa2543 were needed for optimal growth on malonate. Most of these genes were expressed constitutively during growth on several carbon sources, including malonate. Our data indicate that R. palustris uses a piecemeal approach to growing on malonate. The data also raise the possibility that this bacterium will evolve to use malonate efficiently if confronted with an appropriate selection pressure.IMPORTANCE There is interest in understanding how bacteria metabolize malonate because this three-carbon dicarboxylic acid can serve as a building block in bioengineering applications to generate useful compounds that have an odd number of carbons. We found that the phototrophic bacterium Rhodopseudomonas palustris grows extremely slowly on malonate. We identified two enzymes and two TRAP transporters involved in the uptake and metabolism of malonate, but some of these elements are apparently not very efficient. R. palustris cells growing with malonate have the potential to be excellent biocatalysts, because cells would be able to divert cellular resources to the production of value-added compounds instead of using them to support rapid growth. In addition, our results suggest that R. palustris is a candidate for directed evolution studies to improve growth on malonate and to observe the kinds of genetic adaptations that occur to make a metabolic pathway operate more efficiently.


Assuntos
Malonatos/metabolismo , Redes e Vias Metabólicas , Rodopseudomonas/genética , Biodegradação Ambiental , Transporte Biológico , Regulação Bacteriana da Expressão Gênica , Rodopseudomonas/crescimento & desenvolvimento , Rodopseudomonas/metabolismo
16.
Bio Protoc ; 10(23): e3834, 2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33659483

RESUMO

Transfer RNA (tRNA) is an essential link between the genetic code and proteins. During the process of translation, tRNA is charged with its cognate amino acid and delivers it to the ribosome, thus serving as a substrate of protein synthesis. To analyze the charging state of a particular tRNA, total RNA is purified and analyzed on an acid-urea gel. Separated RNA is then transferred to a membrane and detected with a probe for the tRNA of interest. Here, we present an improved protocol to analyze the tRNA charging state in the α-proteobacterium Rhodopseudomonas palustris. Compared to the classical method, the RNA isolation step is optimized to suit this organism. Additionally, a non-radioactive platform is used for electrophoresis and Northern blots. This significantly reduces the time and the effort required for this protocol.

17.
Bio Protoc ; 10(23): e3835, 2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33659484

RESUMO

Ribosomes are an integral part of cellular life. They are complex molecular machines consisting of multiple ribosomal proteins and RNAs. To study different aspects of ribosome composition, many methods have been developed over the decades. Here, we describe how to purify ribosomes from the α-proteobacterium Rhodopseudomonas palustris. Following this protocol, RNA can be extracted from either purified ribosomes or directly from cell cultures, and ribosomal RNAs quantified using Northern blot. This protocol gives an example of studying ribosomes in a bacterium other than the commonly used E. coli. The challenge of performing Northern blots with rRNA is also addressed in detail.

18.
mBio ; 10(6)2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772049

RESUMO

The purple nonsulfur bacterium Rhodopseudomonas palustris is a model for understanding how a phototrophic organism adapts to changes in light intensity because it produces different light-harvesting (LH) complexes under high light (LH2) and low light intensities (LH3 and LH4). Outside of this change in the composition of the photosystem, little is understood about how R. palustris senses and responds to low light intensity. On the basis of the results of transcription analysis of 17 R. palustris strains grown in low light, we found that R. palustris strains downregulate many genes involved in iron transport and homeostasis. The only operon upregulated in the majority of R. palustris exposed to low light intensity was pucBAd, which encodes LH4. In previous work, pucBAd expression was shown to be modulated in response to light quality by bacteriophytochromes that are part of a low-light signal transduction system. Here we found that this signal transduction system also includes a redox-sensitive protein, LhfE, and that its redox sensitivity is required for LH4 synthesis in response to low light. Our results suggest that R. palustris upregulates its LH4 system when the cellular redox state is relatively oxidized. Consistent with this, we found that LH4 synthesis was upregulated under high light intensity when R. palustris was grown semiaerobically or under nitrogen-fixing conditions. Thus, changes in the LH4 system in R. palustris are not dependent on light intensity per se but rather on cellular redox changes that occur as a consequence of changes in light intensity.IMPORTANCE An essential aspect of the physiology of phototrophic bacteria is their ability to adjust the amount and composition of their light-harvesting apparatus in response to changing environmental conditions. The phototrophic purple bacterium R. palustris adapts its photosystem to a range of light intensities by altering the amount and composition of its peripheral LH complexes. Here we found that R. palustris regulates its LH4 complex in response to the cellular redox state rather than in response to light intensity per se Relatively oxidizing conditions, including low light, semiaerobic growth, and growth under nitrogen-fixing conditions, all stimulated a signal transduction system to activate LH4 expression. By understanding how LH composition is regulated in R. palustris, we will gain insight into how and why a photosynthetic organism senses and adapts its photosystem to multiple environmental cues.


Assuntos
Oxigênio/metabolismo , Rodopseudomonas/metabolismo , Rodopseudomonas/efeitos da radiação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Luz , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Óperon , Oxirredução , Fotossíntese , Rodopseudomonas/genética
19.
mBio ; 10(5)2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615958

RESUMO

Gram-negative bacteria in infections, biofilms, and industrial settings often stop growing due to nutrient depletion, immune responses, or environmental stresses. Bacteria in this state tend to be tolerant to antibiotics and are often referred to as dormant. Rhodopseudomonas palustris, a phototrophic alphaproteobacterium, can remain fully viable for more than 4 months when its growth is arrested. Here, we show that protein synthesis, specific proteins involved in translation, and a stringent response are required for this remarkable longevity. Because it can generate ATP from light during growth arrest, R. palustris is an extreme example of a bacterial species that will stay alive for long periods of time as a relatively homogeneous population of cells and it is thus an excellent model organism for studies of bacterial longevity. There is evidence that other Gram-negative species also continue to synthesize proteins during growth arrest and that a stringent response is required for their longevity as well. Our observations challenge the notion that growth-arrested cells are necessarily dormant and metabolically inactive and suggest that such bacteria may have a level of metabolic activity that is higher than many would have assumed. Our results also expand our mechanistic understanding of a crucial but understudied phase of the bacterial life cycle.IMPORTANCE We are surrounded by bacteria, but they do not completely dominate our planet despite the ability of many to grow extremely rapidly in the laboratory. This has been interpreted to mean that bacteria in nature are often in a dormant state. We investigated life in growth arrest of Rhodopseudomonas palustris, a proteobacterium that stays alive for months when it is not growing. We found that cells were metabolically active, and they continued to synthesize proteins and mounted a stringent response, both of which were required for their longevity. Our results suggest that long-lived bacteria are not necessarily inactive but have an active metabolism that is well adjusted to life without growth.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Rodopseudomonas/efeitos dos fármacos , Rodopseudomonas/metabolismo , Proteínas de Bactérias/genética , Modelos Biológicos , Proteoma/metabolismo
20.
Elife ; 82019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31180327

RESUMO

The second messenger signaling molecule cyclic diguanylate monophosphate (c-di-GMP) drives the transition between planktonic and biofilm growth in many bacterial species. Pseudomonas aeruginosa has two surface sensing systems that produce c-di-GMP in response to surface adherence. Current thinking in the field is that once cells attach to a surface, they uniformly respond by producing c-di-GMP. Here, we describe how the Wsp system generates heterogeneity in surface sensing, resulting in two physiologically distinct subpopulations of cells. One subpopulation has elevated c-di-GMP and produces biofilm matrix, serving as the founders of initial microcolonies. The other subpopulation has low c-di-GMP and engages in surface motility, allowing for exploration of the surface. We also show that this heterogeneity strongly correlates to surface behavior for descendent cells. Together, our results suggest that after surface attachment, P. aeruginosa engages in a division of labor that persists across generations, accelerating early biofilm formation and surface exploration.


Bacteria can adopt different lifestyles, depending on the environment in which they grow. They can exist as single cells that are free to explore their environment or group together to form 'biofilms'. The bacteria in biofilms stick to a surface, and produce a slimy 'matrix' that covers and thereby protects them. Biofilms have been found in lung infections that affect people with the genetic disorder cystic fibrosis, and can also form on the surface of medical implants. Because the biofilm lifestyle protects bacteria from the immune system and antimicrobial drugs, learning about how biofilms form could help researchers to discover ways to prevent and treat such infections. Many bacteria switch between the free-living and biofilm lifestyles by altering their levels of a signaling molecule called cyclic diguanylate monophosphate (called c-di-GMP for short). Bacteria living in biofilms have much higher levels of c-di-GMP than their free-living counterparts, and bacteria that have high levels of c-di-GMP produce more biofilm matrix. Bacteria called Pseudomonas aeruginosa use a protein signaling complex called the Wsp system to sense that they are on a surface and increase c-di-GMP production. Questions remained about how quickly this change in production occurs, and whether bacteria pass on their c-di-GMP levels to the new descendant cells when they divide. Armbruster et al. monitored individual cells of P. aeruginosa producing c-di-GMP as they began to form biofilms. Unexpectedly, not all cells increased their c-di-GMP levels when they first attached to a surface. Instead, Armbruster et al. found that there are two populations ­ high and low c-di-GMP cells ­ that each perform complementary and important tasks in the early stages of biofilm formation. The high c-di-GMP cells represent 'biofilm founders' that start to produce the biofilm matrix, whereas the low c-di-GMP cells represent 'surface explorers' that spend more time traveling along the surface. Armbruster et al. found that the Wsp surface sensing system generates these two populations of cells. Moreover, the c-di-GMP levels in a bacterial cell even affect the behavior of the descendant cells that form when it divides. This effect can persist for several cell generations. More work is needed to examine exactly how the biofilm founders and surface explorers interact and influence how biofilms form, and to discover if blocking c-di-GMP signaling prevents biofilm formation. This could ultimately lead to new strategies to prevent and treat infections in humans.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , GMP Cíclico/análogos & derivados , Pseudomonas aeruginosa/metabolismo , Aderência Bacteriana/genética , Aderência Bacteriana/fisiologia , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...